Repo Cutting Compound ## **CRC Industries (CRC Industries New Zealand)** Version No: 11.1 Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017 Initial Date: 15/09/2006 Revision Date: 30/08/2023 Print Date: 09/10/2025 S.GHS.NZL.EN ## SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** | Product name | Repo Cutting Compound | |-------------------------------|-----------------------| | Chemical Name | Not Applicable | | Synonyms | Not Available | | Chemical formula | Not Applicable | | Other means of identification | Not Available | ## Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses For the restoration of existing automotive finishes. #### Details of the manufacturer or importer of the safety data sheet | Registered company name | CRC Industries (CRC Industries New Zealand) | |-------------------------|---| | Address | 10 Highbrook Drive East Tamaki Auckland New Zealand | | Telephone | +64 9 272 2700 | | Fax | +64 9 274 9696 | | Website | www.crc.co.nz | | Email | - No EMAL ID NEEDED for NZ - JACK | ## **Emergency telephone number** | Association / Organisation | CRC Industries (CRC Industries New Zealand) | CHEMWATCH EMERGENCY RESPONSE (24/7) | |-------------------------------------|--|-------------------------------------| | Emergency telephone number(s) | NZ Poisons Centre 0800 POISON (0800 764 766) | +64 800 700 112 (ID#: 4546-70) | | Other emergency telephone number(s) | 111 (NZ Emergency Services) | +61 3 9573 3188 | ## **SECTION 2 Hazards identification** #### Classification of the substance or mixture | Classification [1] | Flammable Liquids Category 3, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2, Acute Toxicity (Inhalation) Category 4, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Specific Target Organ Toxicity - Repeated Exposure Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 3 | |--|---| | Legend: | 1. Classification by vendor; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No
1272/2008 - Annex VI | | Determined by using
GHS/HSNO criteria | 3.1C, 6.1D (inhalation), 6.3A, 6.4A, 6.9B, 9.1C | ## Label elements #### Hazard pictogram(s) Signal word Warning ## Hazard statement(s) | H226 | Flammable liquid and vapour. | |------|--| | H315 | Causes skin irritation. | | H319 | Causes serious eye irritation. | | H332 | Harmful if inhaled. | | H336 | May cause drowsiness or dizziness. | | H373 | May cause damage to organs through prolonged or repeated exposure. | | H412 | Harmful to aquatic life with long lasting effects. | ## Precautionary statement(s) Prevention | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | |------|--|--| | P260 | Do not breathe mist/vapours/spray. | | | P271 | Use only outdoors or in a well-ventilated area. | | | P240 | Ground and bond container and receiving equipment. | | ## Precautionary statement(s) Response | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam to extinguish. | | |----------------|--|--| | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P312 | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | ## Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | |-----------|--| | P405 | Store locked up. | ## Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. No further product hazard information. ## **SECTION 3 Composition / information on ingredients** ## Substances See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |---------------|--|----------------| | 1317-95-9 | 30-60 | <u>tripoli</u> | | 8052-41-3. | 10-30 | white spirit | | 8002-09-3 | 1-10 | pine oil | | Not Available | 1-10 | additives | | 7732-18-5 | 30-60 | water | | Legend: | d: 1. Classification by vendor; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | ## **SECTION 4 First aid measures** ## Description of first aid measures **Eye Contact** If this product comes in contact with the eyes: ▶ Wash out immediately with fresh running water. | | Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|--| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol. | #### Indication of any immediate medical attention and special treatment needed For acute or short term repeated exposures to petroleum distillates or related hydrocarbons: - Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure. - Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated. - Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance - A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax. - Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. - Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology] Treat symptomatically. For camphor intoxications: - Treatment is aimed at preventing convulsions. Intravenous sodium thiopental, pentabarbital or amobarbital (Amytal) is effective. The drug should be injected slowly until the desired condition is reached, namely a degree of depression sufficient to prevent or stop convulsions and to keep the patient asleep, but not deep enough to depress respirations or blood pressure. Intramuscular sodium phenobarbitol
may also be helpful. These drugs as well as diazepam, can be used to terminate camphor convulsions. - The patient should be kept under careful observation for many hours and protected from all possible stimuli. Wakefulness, muscular twitchings and increased reflex excitability are signs that warn for the need of additional barbiturate. - Oxygen therapy, artificial respiration, as indicated. - Gastric lavage (with warm water) may be performed when the patient is asleep or well pre-medicated. In the presymptomatic stage, lavage or induction of emesis should take precedence over all measures. Because of its low water solubility, pieces of camphor may remain in the stomach unless a large tube is used for lavage. - After the stomach is emptied, a slurry of activated charcoal and/ or a saline cathartic may be administered by mouth. - Avoid ingestion of oils or alcohol which may promote intestinal absorption of camphor. - Extracorporeal haemodialysis with a lipid dialysate or resin haemoperfusion may be indicated. - Laboratory data are not usually relevant, but liver and kidney tests are advisable. Camphor has been detected in sera of intoxicated patients at levels of 0.3 to 1.8 ug/ml. GOSSELIN, SMITH & HODGE: Clinical Toxicology of Commercial Products, 5th Ed. In acute poisonings by essential oils the stomach should be emptied by aspiration and lavage. Give a saline purgative such as sodium sulfate (30 g in 250 ml water) unless catharsis is already present. Demulcent drinks may also be given. Large volumes of fluid should be given provided renal function is adequate. [MARTINDALE: The Extra Pharmacopoeia, 28th Ed.] #### **SECTION 5 Firefighting measures** ## Extinguishing media - Water spray or fog. - Alcohol stable foam. - Dry chemical powder. - Carbon dioxide. | E1 | | (1), 111 | | |------|-------|----------|----| | rire | Incom | patibili | ιγ | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. | |-----------------------|--| | Fire/Explosion Hazard | Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) silicon dioxide (SiO2) other pyrolysis products typical of burning organic material. | #### **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures May emit poisonous fumes. See section 8 #### **Environmental precautions** See section 12 ## Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. | |--------------|--| | Major Spills | Moderate hazard. ► Clear area of personnel and move upwind. ► Alert Fire Brigade and tell them location and nature of hazard. ► Wear breathing apparatus plus protective gloves. | Personal Protective Equipment advice is contained in Section 8 of the SDS. ## **SECTION 7 Handling and storage** ## Precautions for safe handling ▶ Containers, even those that have been emptied, may contain explosive vapours. ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. ▶ DO NOT allow clothing wet with material to stay in contact with skin · Electrostatic discharge may be generated during pumping - this may result in fire. · Ensure electrical continuity by bonding and grounding (earthing) all equipment. · Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged Safe handling to twice its diameter, then <= 7 m/sec). · Avoid splash filling. • Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. Store in original containers. ▶ Keep containers securely sealed. Other information No smoking, naked lights or ignition sources. ▶ Store in a cool, dry, well-ventilated area. ## Conditions for safe storage, including any incompatibilities | Suitable container | Metal can or drum Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. | |-------------------------|--| | Storage incompatibility | ► Avoid reaction with oxidising agents | #### **SECTION 8 Exposure controls / personal protection** ## **Control parameters** #### Occupational Exposure Limits (OEL) #### **INGREDIENT DATA** | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---|--------------|--|------------------------|---------------|---------------|--| | New Zealand Workplace
Exposure Standards (WES) | tripoli | Inhalable dust
(not otherwise
classified) | 10 mg/m3 | Not Available | Not Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | tripoli | Silica-
Crystalline (all
forms)
respirable dust | 0.025 mg/m3 | Not Available | Not Available | carcinogen category 1 - Known or presumed human carcinogen α-quartz and cristobalite are confirmed carcinogens. Significant risk to workers will remain at WES-TWA exposures of 0.025mg/m3. The US Occupational Safety and Health Administration (OSHA) has estimated the lifetime silicosis mortality risk for workers exposed at this level for 8 hours per day at between 4 and 22 deaths per 1,000 workers and the lifetime lung cancer mortality risk for workers exposed at this level for 8 hours per day at between 3 and 23 deaths per 1,000 workers. | | New Zealand Workplace
Exposure Standards (WES) | tripoli | Respirable dust (not otherwise classified) | 3 mg/m3 | Not Available | Not Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | white spirit | Stoddard
solvent (White
spirits) | 100 ppm / 525
mg/m3 | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |--------------|---------------|---------------| | tripoli | Not Available | Not Available | | white spirit | 20,000 mg/m3 | Not Available | | pine oil | Not Available | Not Available | | water | Not Available | Not Available | #### **Exposure controls** # Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Individual protection measures, such as personal protective equipment ### Eye and face protection - Safety glasses with side shields. - ► Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. #### Skin protection See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber ## NOTE: - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable
gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. #### **Body protection** Hands/feet protection See Other protection below #### Other protection - Overalls. - ▶ P.V.C apron. - ▶ Barrier cream. - ▶ Skin cleansing cream. #### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|-------------------------| | up to 10 x ES | A-AUS P2 | - | A-PAPR-AUS / Class 1 P2 | | up to 50 x ES | - | A-AUS / Class 1 P2 | - | | up to 100 x ES | - | A-2 P2 | A-PAPR-2 P2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) If inhalation risk above the TLV exists, wear approved dust respirator. Use respirators with protection factors appropriate for the exposure level. - ▶ Up to 5 X TLV, use valveless mask type; up to 10 X TLV, use 1/2 mask dust respirator - ▶ Up to 50 X TLV, use full face dust respirator or demand type C air supplied respirator - ▶ Up to 500 X TLV, use powered air-purifying dust respirator or a Type C pressure demand supplied-air respirator - Over 500 X TLV wear full-face self-contained breathing apparatus with positive pressure mode or a combination respirator with a Type C positive pressure supplied-air full-face respirator and an auxiliary self-contained breathing apparatus operated in pressure demand or other positive pressure mode - ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used ## **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | Appearance | Coloured viscous liquid with a mild odour; not miscible with water. | | | | | |---|---|---|----------------|--|--| | | - | | | | | | Physical state | Liquid | Relative density (Water = 1) | 1.2 | | | | Odour | Not Available | Partition coefficient n-
octanol / water | Not Available | | | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 250 | | | | pH (as supplied) | Not Available | Decomposition temperature (°C) | Not Available | | | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | | | Initial boiling point and boiling range (°C) | 150-200 | Molecular weight (g/mol) | Not Applicable | | | | Flash point (°C) | 44 (SETACC) | Taste | Not Available | | | | Evaporation rate | Not Available | Explosive properties | Not Available | | | | Flammability | Flammable. | Oxidising properties | Not Available | | | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | | | Vapour density (Air = 1) | >1 | VOC g/L | Not Available | | | | Heat of Combustion (kJ/g) | Not Available | Ignition Distance (cm) | Not Available | | | | Flame Height (cm) | Not Available | Flame Duration (s) | Not Available | | | | Enclosed Space Ignition
Time Equivalent (s/m3) | Not Available | Enclosed Space Ignition
Deflagration Density
(g/m3) | Not Available | | | ## **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ## **SECTION 11 Toxicological information** | nformation on toxicologic | al effects | |---|---| | a) Acute Toxicity | There is sufficient evidence to classify this material as acutely toxic. | | b) Skin Irritation/Corrosion | There is sufficient evidence to classify this material as skin corrosive or irritating. | | c) Serious Eye
Damage/Irritation | There is sufficient evidence to classify this material as eye damaging or irritating | | d) Respiratory or Skin
sensitisation | Based on available data, the classification criteria are not met. | | e) Mutagenicity | Based on available data, the classification criteria are not met. | | f) Carcinogenicity | Based on available data, the classification criteria are not met. | | g) Reproductivity | Based on available data, the classification criteria are not met. | | h) STOT - Single Exposure | There is sufficient evidence to classify this material as toxic to specific organs through single exposure | | i) STOT - Repeated
Exposure | There is sufficient evidence to classify this material as toxic to specific organs through repeated exposure | | j) Aspiration Hazard | Based on available data, the classification criteria are not met. | | Inhaled | Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation overexposure to camphor or camphor-containing oils may produce irritations of the eye and nose, with possible loss of smell. Acute exposures affect the central nervous system, resulting in nausea, vomiting, dizziness, agitation and confusion. Inhalation of essential oil volatiles may cause dizziness, rapid, shallow breathing, increased heart rate, respiratory irritation, loss of consciousness or convulsions. Urination may stop, and there may be swelling and
inflammation of the lungs. Inhaling high concentrations of mixed hydrocarbons can cause narcosis, with nausea, vomiting and lightheadedness. Low molecular weight (C2-C12) hydrocarbons can irritate mucous membranes and cause incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and stupor. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Exposure to white spirit may cause nausea and vertigo. Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. | | Ingestion | Small oral doses of camphor or camphor-containing oils may produce a sensation of warmth in the stomach; larger doses may induce nausea and vomiting. Camphor stimulates the central nervous system. Ingestion of petroleum hydrocarbons can irritate the pharynx, oesophagus, stomach and small intestine, and cause swellings and ulcers of the mucous. Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions. Essential oils cause mild irritation of the mouth if taken orally, causing more saliva to be produced and a warm feeling. Large amounts affect the digestive system causing nausea, vomiting and diarrhoea. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. | | Skin Contact | This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Camphor is mainly a local irritant. Symptoms might include reddening and warming of the skin. Essential oils irritate the skin and redden it, causing at first warmth and smarting, followed by some local loss of sensation. They | have been used to treat chronic inflammatory conditions and to relieve neuralgia and rheumatic pain. Open cuts, abraded or irritated skin should not be exposed to this material | | Aromatic hydrocarbons may produce sensitivity and redness of the skin. They are not likely to be absorbed into the body through the skin but branched species are more likely to. | |-----|--| | Eye | This material causes serious eye irritation. Direct contact with camphor or camphor-containing oils may produce inflammation of the cornea. Direct eye contact with petroleum hydrocarbons can be painful, and the corneal epithelium may be temporarily damaged. Aromatic species can cause irritation and excessive tear secretion. | | | Strong evidence exists that this substance may cause irreversible mutations (though not lethal) even following a single exposure. | Strong evidence exists that this substance may cause irreversible mutations (though not lethal) even following a single exposure Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Harmful: danger of serious damage to health by prolonged exposure through inhalation. This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects. Laboratory (in vitro) and animal studies show, exposure to the material may result in a possible risk of irreversible effects, with the possibility of producing mutation. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. The absence of clinical silicosis among workers exposed to tripoli may be due to the lack of potential activity of tripoli. The dielectric properties of tripoli ensure rapid agglomeration and settling of dust particles, thus reducing the opportunity for exposure. Animal studies have shown tripoli may cause progressive nodular fibrosis #### Chronic Immersion of the hands and forearms in white spirits may quickly result in inflammation of the skin and follicles. Workers exposed to white spirit have reported nausea and vomiting and one worker has been reported to develop aplastic anaemia, bone marrow depression and this person later died from septicaemia. Person with pre-existing convulsive disorders, eye and skin diseases, chronic respiratory disease, kidney and liver disease may be more susceptible to symptoms of exposure at potentially hazardous levels. It may have cancer causing potentials especially when applied concurrently with croton oil. Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin. A number of common flavor and fragrance chemicals can form peroxides surprisingly fast in air. Antioxidants can in most cases minimize the oxidation. Fragrance terpenes are easily oxidized in air. Non-oxidised forms are very weak sensitizers; however, after oxidation, the hyproperoxides are strong sensitisers which may cause allergic reactions. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. d-Limonene may cause damage to and growths in the kidney. These growths can progress to cancer. | Repo Cutting Compound | TOXICITY | IRRITATION | |-----------------------|--|--| | | Not Available | Not Available | | | TOXICITY | IRRITATION | | tripoli | Not Available | Not Available | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >3000 mg/kg ^[1] | Eye (Human): 100ppm - Mild | | | Inhalation (Rat) LC50: >5.5 mg/l4h ^[1] | Eye (Rodent - rabbit): 500mg/24H - Moderate | | white spirit | Oral (Rat) LD50: >5000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | | Skin: adverse effect observed (irritating) ^[1] | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 5000 mg/kg ^[2] | Skin (Rodent - rabbit): 500mg/24H - Severe | | pine oil | Inhalation (Rat) LC50: >3.79 mg/L4h ^[2] | | | | Oral (Rat) LD50: 3200 mg/kg ^[2] | | | | TOXICITY | IRRITATION | | water | Oral (Rat) LD50: >90000 mg/kg ^[2] | Not Available | | Legend: | Value obtained from Europe ECHA Registered Sul
Unless otherwise specified data extracted from RTE | ostances - Acute toxicity 2. Value obtained from manufacturer's SDS. | ## TRIPOLI **WARNING:** For inhalation exposure <u>ONLY</u>: This substance has been classified by the IARC as Group 1: **CARCINOGENIC TO HUMANS** The International Agency for Research on Cancer (IARC) has classified occupational exposures to **respirable** (<5 um) crystalline silica as being carcinogenic to humans. This classification is based on what IARC considered sufficient evidence from epidemiological studies of humans for the carcinogenicity of inhaled silica in the forms of quartz and cristobalite. Crystalline silica is also known to cause silicosis, a non-cancerous lung disease. Intermittent exposure produces; focal fibrosis, (pneumoconiosis), cough, dyspnoea, liver tumours. * Millions of particles per cubic foot (based on impinger samples counted by light field techniques). NOTE: the physical nature of quartz in the product determines whether it is likely to present a chronic health problem. To be a hazard the material must enter the breathing zone as respirable particles. white spirit, as CAS RN 8052-41-3 Petroleum contains aromatic (benzene, toluene, ethyl benzene, napthalene) and aliphatic hydrocarbons (n-hexane), which can result in many detrimental health effects, including, cancer, tumour formation, hearing loss, and nervous system toxicity. Animal testing shows breathing in petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans. Similarly, exposure to gasoline over a lifetime can cause kidney cancer in animals, but the relevance in humans is questionable. WHITE SPIRIT Most studies involving gasoline have shown that gasoline does not cause genetic mutation, including all recent studies in living human subjects (such as in petrol service station attendants). Animal studies show concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus. Prolonged contact with petroleum may result in skin inflammation and make the skin more sensitive to irritation and penetration by other materials. The terpenoid hydrocarbons are found in needle trees and deciduous plants. This category of chemicals shows very low acute toxicity. They are ecreted in the urine. They are unlikely to cause genetic damage, but animal testing shows that they do cause increased rates of kidney cancer. Adverse reactions to fragrances in perfumes and fragranced
cosmetic products include allergic contact dermatitis, irritant contact dermatitis, sensitivity to light, immediate contact reactions, and pigmented contact dermatitis. Airborne and connubial contact dermatitis occurs. Contact allergy is a lifelong condition, so symptoms may occur on re-exposure. Allergic contact dermatitis can be severe and widespread, with significant impairment of quality of life and potential consequences for fitness for work. If the perfume contains a sensitizing component, intolerance to perfumes by inhalation may occur. Fragrance allergens act as haptens, which are small molecules that cause an immune reaction only when attached to a carrier protein. However, not all sensitizing fragrance chemicals are directly reactive, but some require previous activation. A prehapten PINE OIL is a chemical that itself causes little or no sensitization, but it is transformed into a hapten outside the skin by a chemical reaction (oxidation in air or reaction with light) without the requirement of an enzyme. For prehaptens, it is possible to prevent activation outside the body to a certain extent by different measures, for example, prevention of air exposure during handling and storage of the ingredients and the final product, and by the addition of suitable antioxidants. When antioxidants are used, care should be taken that they will not be activated themselves, and thereby form new sensitisers Prehaptens: Most terpenes with oxidisable allylic positions can be expected to self-oxidise on air exposure. The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Repeated exposures may produce severe ulceration. 55rad The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. For terpenoid tertiary alcohols and their related esters: These substances are metabolised in the liver and excreted primarily in the urine and faeces. A portion is also excreted unchanged. They have low short term toxicity when ingested or applied on the skin. However, repeated and long term use may **Repo Cutting Compound &** cause dose dependent harm to both the foetus and mother. PINE OIL Camphor appears to have moderate acute oral toxicity, and a higher toxicity when inhaled. Long term inhalation may cause emphysema. There is no observed tumour potential. Reproductive toxicity studies were not available for camphor, however, in developmental toxicity studies, it demonstrated no foetal toxicity. d-Limonene is readily absorbed by inhalation and swallowing. Absorption through the skin is reported to the lower than by inhalation. It is rapidly distributed to different tissues in the body, readily metabolized and eliminated, primary through the urine. Limonene shows low acute toxicity by all three routes in animals. Limonene is a skin irritant in both experimental animals and humans. Repo Cutting Compound & **TRIPOLI & PINE OIL &** No significant acute toxicological data identified in literature search. WATER **Acute Toxicity** Carcinogenicity × × Skin Irritation/Corrosion Reproductivity Serious Eye STOT - Single Exposure Damage/Irritation Respiratory or Skin × STOT - Repeated Exposure sensitisation × × Mutagenicity **Aspiration Hazard** **Legend: X** − Data either not available or does not fill the criteria for classification ✓ – Data available to make classification #### **Toxicity** | Repo Cutting Compound | Endpoint | Test Duration (hr) | Species | Value | Source | |-----------------------|------------------|--------------------|---|-------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | tripoli | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | untita aminis | EC50 | 96h | Algae or other aquatic plants | 0.277mg/l | 2 | | white spirit | LC50 | 96h | Fish | 0.14mg/l | 2 | | | NOEC(ECx) | 720h | Fish | 0.02mg/l | 2 | | pine oil | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 48h | Crustacea | 15.3-
25.2mg/L | 4 | | | LC50 | 96h | Fish | 14.4-
18.9mg/L | 4 | | | EC50(ECx) | 48h | Crustacea | 15.3-
25.2mg/L | 4 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | water | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | Legend: | 4. US EPA, Ed | | A Registered Substances - Ecotoxicologica
ECETOC Aquatic Hazard Assessment Dat
tion Data 8. Vendor Data | | - | Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the oxygen transfer between the air and the water Oils of any kind can cause: - drowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility - ▶ lethal effects on fish by coating gill surfaces, preventing respiration - asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and - adverse aesthetic effects of fouled shoreline and beaches In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation. For Silica: Environmental Fate: Most documentation on the fate of silica in the environment concerns dissolved silica, in the aquatic environment, regardless of origin, (manmade or natural), or structure, (crystalline or amorphous). Terrestrial Fate: Silicon makes up 25.7% of the Earth's crust, by weight, and is the second most abundant element, being exceeded only by oxygen. Silicon is not found free in nature, but occurs chiefly as the oxide and as silicates. Once released into the environment, no distinction can be made between the initial forms of silica. For Tertiary Terpenoid Alcohols and their Esters: Linalool – log Kow: 2.9; alpha-Terpineol – log Kow: 2.9; Plinol – log Kow: 2.98. Environmental Fate: All the substances in this chemical category are liquids at ambient temperature. Pine oil (alpha-terpineol) has a slightly higher boiling point than myrcenol and linalool Atmospheric Fate: The calculated photodegradation half-lives for the ternary terpenoid alcohols and esters are in the range from 1.07 to 9.08 hours. For Terpenes such as Limonene and Isoprene: Atmospheric Fate: Contribute to aerosol and photochemical smog formation. When terpenes are introduced to the atmosphere, may either decrease ozone concentrations when oxides of nitrogen are low or, if emissions take place in polluted air (i.e. containing high concentrations of nitrogen oxides), leads to an increase in ozone concentrations. Lower terpenoids can react with unstable reactive gases and may act as precursors of photochemical smog therefore indirectly influencing community and ecosystem properties. The reactions of ozone with larger unsaturated compounds, such as the terpenes can give rise to oxygenated species with low vapour pressures that subsequently condense to form secondary organic aerosol. Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are reactive with environmental ozone and many produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed space to facilitate reactions should be considered. Source of unsaturated substances Unsaturated substances (Reactive Emissions) Major Stable Products produced following reaction with ozone. #### Environmental fate: Camphor is expected to quickly volatilise into the ambient air where it is expected to rapidly photodegrade. Therefore, the camphor residues that leach from the soil into water are not expected to be at concentrations that would pose a risk concern, especially to nontarget plant and animal species. An estimate bioconcentration factor of 38 suggests the potential for bioconcentration of camphor in aquatic organisms is moderate. #### **Ecotoxicity:** There were no deaths in sea lamprey (Petromyzon marinus) exposed to freshwater with a concentration of 5000 ug/L (5 mg/L) of camphor for 24 hours, but stress behavior was observed For Limonenes: Atmospheric Fate: Due to the high volatility of limonene, the atmosphere is expected to be the major environmental sink for this chemical. The oxidation of limonene may contribute to aerosol and photochemical smog formation. The daytime atmospheric lifetime of d-limonene is estimated to range from 12 to 48 minutes depending upon local hydroxyl rate and ozone concentrations. Ozonolysis of limonene may also lead to the formation of hydrogen peroxide and organic peroxides, which have various toxic effects on plant cells and may damage forests.
DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|-------------------------|------------------| | water | LOW | LOW | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |--------------|----------------------| | white spirit | HIGH (LogKOW = 5.01) | | pine oil | LOW (LogKOW = 2.69) | | water | LOW (LogKOW = -1.38) | #### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | #### **SECTION 13 Disposal considerations** #### Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ▶ Reuse - Recycling - ▶ Disposal (if all else fails) # Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Authority for disposal. - ▶ Bury or incinerate residue at an approved site. - ▶ Recycle containers if possible, or dispose of in an authorised landfill. Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017 ## **Disposal Requirements** Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled. The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. ## **SECTION 14 Transport information** #### Labels Required | - | | |------------------|----------------| | Marine Pollutant | NO | | HAZCHEM | Not Applicable | Land transport (UN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS #### Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS #### 14.7. Maritime transport in bulk according to IMO instruments ## 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------|---------------| | tripoli | Not Available | | white spirit | Not Available | | pine oil | Not Available | | water | Not Available | #### 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |--------------|---------------| | tripoli | Not Available | | white spirit | Not Available | | pine oil | Not Available | | water | Not Available | #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture This substance is to be managed using the conditions specified in an applicable Group Standard | HSR Number | Group Standard | |------------|---| | HSR002528 | Cleaning Products Flammable Group Standard 2020 | Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit. #### tripoli is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) ## white spirit is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) ## pine oil is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) ## water is found on the following regulatory lists New Zealand Inventory of Chemicals (NZIoC) ## **Additional Regulatory Information** Not Applicable #### **Hazardous Substance Location** Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Quantity (Closed Containers) | Quantity (Open Containers) | |--------------|---|----------------------------| | 3.1C | 500 L in containers more than 5 L | 250 L | | 3.1C | 1 500 L in containers up to and including 5 L | 250 L | #### **Certified Handler** Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Class of substance | Quantities | |--------------------|----------------| | Not Applicable | Not Applicable | Refer Group Standards for further information #### Maximum quantities of certain hazardous substances permitted on passenger service vehicles Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Gas (aggregate water capacity in mL) | Liquid (L) | Solid (kg) | Maximum quantity per package for each classification | |--------------|--------------------------------------|------------|------------|--| | 3.1C or 3.1D | | | | 10 L | ## **Tracking Requirements** Not Applicable ## **National Inventory Status** | National Inventory | Status | | | |---|--|--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | | Canada - DSL | No (tripoli) | | | | Canada - NDSL | No (tripoli; white spirit; pine oil; water) | | | | China - IECSC | Yes | | | | Europe - EINEC / ELINCS /
NLP | No (tripoli; pine oil) | | | | Japan - ENCS | No (tripoli; pine oil) | | | | Korea - KECI | Yes | | | | New Zealand - NZIoC | Yes | | | | Philippines - PICCS | Yes | | | | USA - TSCA | TSCA Inventory 'Active' substance(s) (white spirit; pine oil; water); No (tripoli) | | | | Taiwan - TCSI | Yes | | | | Mexico - INSQ | No (tripoli) | | | | Vietnam - NCI | Yes | | | | Russia - FBEPH | No (tripoli) | | | | UAE - Control List
(Banned/Restricted
Substances) | No (tripoli; white spirit; pine oil; water) | | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | | ## **SECTION 16 Other information** | Revision Date | 30/08/2023 | |---------------|------------| | Initial Date | 15/09/2006 | ## **SDS Version Summary** | Version | Date of
Update | Sections Updated | |---------|-------------------|--| | 10.1 | 21/08/2023 | Toxicological information - Acute Health (inhaled), Hazards identification - Classification | | 11.1 | 30/08/2023 | Toxicological information - Chronic Health, Hazards identification - Classification, Exposure controls / personal protection - Exposure Standard | ## Other information Classification of the preparation and its individual components has drawn on official and authoritative sources using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** - ▶ PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - ▶ IARC: International Agency for Research on Cancer - ▶ ACGIH: American Conference of Governmental Industrial Hygienists - ▶ STEL: Short Term Exposure Limit - ► TEEL: Temporary Emergency Exposure Limit。 - ▶ IDLH: Immediately Dangerous to Life or Health Concentrations - ▶ ES: Exposure Standard - ▶ OSF: Odour Safety Factor - ▶ NOAEL: No Observed Adverse Effect Level - ▶ LOAEL: Lowest Observed Adverse Effect Level - ▶ TLV: Threshold Limit Value - LOD: Limit Of Detection - ▶ OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - ▶ BEI: Biological Exposure Index - ▶ DNEL: Derived No-Effect Level - ▶ PNEC: Predicted no-effect concentration - ▶ MARPOL: International Convention for the Prevention of Pollution from Ships - ▶ IMSBC: International Maritime Solid Bulk Cargoes Code - ▶ IGC: International Gas Carrier Code - ▶ IBC: International Bulk Chemical Code - ▶ AIIC: Australian Inventory of Industrial Chemicals - ▶ DSL: Domestic Substances List - ▶ NDSL: Non-Domestic
Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ▶ EINECS: European INventory of Existing Commercial chemical Substances - ▶ ELINCS: European List of Notified Chemical Substances - ▶ NLP: No-Longer Polymers - ▶ ENCS: Existing and New Chemical Substances Inventory - ▶ KECI: Korea Existing Chemicals Inventory - ▶ NZIoC: New Zealand Inventory of Chemicals - ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances - ► TSCA: Toxic Substances Control Act - ▶ TCSI: Taiwan Chemical Substance Inventory - ▶ INSQ: Inventario Nacional de Sustancias Químicas - ► NCI: National Chemical Inventory - ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances Disclaimer: This SDS was prepared by a third party for product identification purposes only and is not endorsed by or affiliated with the original brand owner.